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NUCLEAR-DATA EVALUATION BASED ON
DIRECT AND INDIRECT MEASUREMENTS WITH GENERAL CORRELATIONS
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Abstract: Optimum procedures for the statistical improvement, or updating, of an
existing nuclear-data evaluation are reviewed and redeveloped from first principles,

consistently employing a minimum-variance viewpoint.

A set of equations is derived

which provides improved values of the data and their covariances, taking into
account information from supplementary measurements and allowing for general

correlations among all measurements.

The minimum-variance solutions thus obtained,

which we call the method of "partitioned least squares,"™ are found to be equivalent
to a method suggested by Yu. V. Linnik and applied by a number of authors to the
analysis of fission-reactor integral experiments; however, up to now, the
partitioned-least-squares formulae have not found widespread use in the field of

basic data evaluation.

This approach is shown to give the same results as the more

commonly applied Normal equations, but with reduced matrix inversion requirements.
Examples are provided to indicate potential areas of application.

(data evaluation, updating, adjustment, minimum variance, Gauss-Markov theorem,
normal equations, least squares, correlation, uncertainty analysis)

Introduction

Many problems in the general field of data
evaluation reduce to the need to update an
existing data set, taking into account a
relatively small number of supplementary meas-
urements, performed directly on the data or on
certain functions of the data. A very useful
tool for accommodating the new information is the
method of correlated linear least squares.

The equations usually solved in applying the
method of correlated linear least squares, the
"Normal" equations, can be derived from a wide
variety of starting points, but many authors,
ranging from C. F. Gauss! to R. W. Peelle,2 have
preferred to view these equations as a method for
minimizing the uncertainty in physical data,
given a set of measurements and their uncer-
tainties. In the language of statistics,
correlated linear least squares (CLLS) is viewed
as a method for constructing minimum-variance
linear unbiased estimators of the true data
values. 1In a result known as the Gauss-Markov
theorem, the Normal equations have been
shownlr3:4 o provide minimum-variance estimates,
not only of the data, but also of every linear
function of the data, an important consideration
in data applications. The proof of the Gauss-
Markov theorem does not require any assumptions
regarding the shape of the probability distribu-
tions of the measurements, except that the
distributions have finite second moments. The
power and general applicability of the CLLS
method probably account for its wide use.

The particular formulation of the CLLS method
that is most appropriate for the task at hand,
namely the updating of an existing data set, does
not require the full generality of the standard
form of the Normal equations, as given for
example in Eq. (24) below, because, in the case
of updating, the sensitivity matrix H relating
the measured quantities to the parameters has a
special "partitioned” structure. As shown below,
it is possible to take advantage of this special
structure of the sensitivity matrix to reduce the
matrix-inversion requirements relative to solving
the Normal equations, while still retaining the
minimum-variance guarantees.

The updating of existing data evaluations

also differs from other applications of the CLLS
method in that the number of data values in the
pre-existing set is often much larger than the
number of new measurements. This provides
considerable motivation for finding approaches
which avoid the inversion of the large, joint
covariance matrix of the old and new measure-
ments. An algorithm that accomplishes this
reduction in matrix-inversion requirements was
given in a textbook by Yu. V. Linnik® and was
later developed into a method for fission-reactor
integral-experiment analysis (or "data
adjustment™) by A. Gandini and co-workers® 7 and
by J. Marable and co-workers® 19, who emphasized
the need to treat correlations between the class
of existing data and the new measurements.

The theoretical justifications offered in
Refs. 5-10 are fundamentally "Bayesian"”; that is,
the measurements are assumed to be sampled from
normal distributions, and the adjustment
equations are then obtained by appeal to the
principle of maximum likelihood. It was noted in
Ref. 2, in connection with the development of the
Normal equations, that arguments based on assumed
normal probability distributions do not seem to
offer guarantees that are as strong as those
given by the minimum-variance approach, because
non-normal probability distributions are
frequently encountered.

Essentially all of the work reported in Refs.
6-10 was motivated by programs in fission-reactor
design and technology. These same adjustment
formulae also appear to have a promising role in
the field of critical evaluation of nuclear data,
as well as other kinds of data. Because of the
potential for future application by a very broad
community of users, we have re-examined the
subject of updating an existing evaluation,
starting from first principles and consistently
employing the viewpoint of minimum-variance
estimation.

Statement of the Problem

We suppose that there exists a data set
[aj, j=1,k] corresponding to the measurement (or
evaluation) of k different physical parameters
(for example, the ground-state masses of k
different nuclei, or a nuclear-reaction cross
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section at k different neutron energies) having

true values Xj. In each case, the measurement is

assumed to differ from the true value by a random

error ey, that is, ajy = x4 + e5. The errors €5

are assumed to have zero mean, so that E(aj) =
xy. We employ the symbol E( ) to indicate the

expectation value of a scalar, vector or matrix,
obtained by averaging each element over the
probability distribution of the errors. We
consider ajy, x4 and ey to be elements of the

column vectors a, x and e, respectively. 1In
vector notation, then,

E(a) = x, (1)

It is also assumed that the errors ey have finite

second moments, given by the covariance or
"dispersion" matrix D(a),

D(a) = cov{a,a) = E(e e7),

where the (T) symbol indicates the matrix
transpose. Since e is a column vector, eT is a
row vector having the same elements, and [e eT]
is a square matrix of dimension k.

The vector a and the covariance matrix D{(a)
introduced above describe the status of one's
knowledge of the parameters prior to the perform-
ance of a set of new measurements. The expected
value of each of these new observations (bj,

i=1l,m) is some function of the parameters x. All
such functions are assumed here to be either
linear or "linearized." That is, we assume that
nonlinearities are either absent or small enough
to be neglected in calculating variances. We
also assume that, if the problem is nonlinear, a
suitable change of variables has been performed,
absorbing the reference values for the linear
expansion into the definitions of both the
parameters and the measurement vectors a and b.
As before, there is a random error fj

associated with each measurement bj, causing the
measurement to differ from the expected value,

b

i = Rjyq7 X9 + Ryp xp +... + Rjx xx + £4,

where Rj j is the ij-th element of the m x k

sensitivity, or derivative, matrix R. The errors
are assumed to have zero mean values, so that

E(b) = R x. (2)

As with a, the second moments of b are given by
D(b) = E(f £T). *“Cross-type" covariances,

indicating correlations between the old and new
measurements, are defined analogously; cov(a,b)

= E(e £T) and cov(b,a) = E(f ef), so that
covib,a) = [cov(a,b)]T.

It is important to emphasize that the
covariance matrices D(a), D(b) and cov{a,b)
describe properties of the experimental (or
evaluation) errors e and £, which, in turn,
depend only on the experiments employed. These
uncertainties and correlations are not related in
any way to the fact that E(a) and E(b) are both
functions of the same parameter set x. The main
point of the CLLS method is that the logical
connection between the two sets of expectation
values, Egs. (1) and (2), is additional informa-
tion that can be used to reduce the uncertainty
in one's knowledge of the parameters x.

E ] : {b] 1 .

Before proceeding to a discussion of how this
reduced uncertainty can be attained, it is useful

to illustrate the idea of measurement correla-
tions by considering some particular examples.
Suppose an experimenter measures the energy-
dependent neutron cross section for a particular
nuclear reaction by counting activation gamma
rays, and the same experimenter also measures,
with the same method, the reaction rate for this
reaction within a large integral assembly irrad-
iated by an external neutron source. The first
measurement may be important in evaluating the
differential cross sections a, while the second
one may be proposed as an integral measurement b
to be used in improving, or adjusting, a.
Potential sources of error which are common to
the two measurements (e. g., uncertainty in the
efficiency of the gamma-ray detector) can
introduce substantial measurement correlations in
such a case. Integral-differential measurement
correlations also can arise when cross-section
measurers, on the one hand, and integral
experimenters, on the other hand, both rely on a
common datum, such as a decay half-life, in
reducing their data.

It is easy to imagine other situations that
have a partitioned character and significant
"cross-type” correlations, but do not involve
neutronics integral experiments. If the number
of parameters is large, it may be very advan-
tageous to analyze these cases, also, with the
partitioned form of least squares rather than the
standard form. For example, suppose an
experimental nuclear physics group measures the
energy-dependent neutron cross sections for five
individual nuclear reactions, as well as the
total cross section (assumed equal, by defini-
tion, to the sum of the individual ones) at each
of 200 neutron energies. Correlations can
clearly exist between any of these 1200 measure-
ments and any other one. An obvious choice for
the parameter set x is the set of true values of”
the individual cross sections, so that k = 1000.
Application of the standard form of the CLLS
method would require the inversion of a matrix of
dimension 1200. As shown below, the same results
can be obtained by inverting only the covariance
matrix of the "discrepancy” vector (the differ-
ences b - R a between the measured "totals"™ and
the sums of the measured "partials"), which would
be of dimension 200.

{t ioned Lon of lated Li
Least Squares

We assume that, for a given application, the
goal is to find best estimates of the true values
x of the parameters or, more generally, best es-
timates of certain fixed linear combinations of
the x. In developing a strategy to accomplish
this, it will prove convenient to introduce a new
vector z with n elements, each defined as a
certain linear combination of all observations,

z=Sa+Th. (3)

The true (or expectation) values of the z are
then given by

E(z) = S E(a) + T E(b),
or,
E(z) =S x+TRXx

We can characterize the above-stated goal as that
of finding a best estimate of E(z), given S and
T. In other words, S8 and T together define a
unique "application.™ It will turn out that the
constant matrices 8 and T affect the minimum-
variance solution only through their effect on
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the magnitude of the auxiliary quantity z, so
they need not be specified in advance. The
important situation where one wishes to adjust
the existing differential data set is included as
the special case [n = k, § = I (the identity
matrix), and T = 0], that is, z = a. The

reverse situation, where one wants to use the
differential data to improve the integral data,

z = b, is a similar special case.

We now introduce z°, to be constructed as a
minimum-variance linear unbiased estimator of the
quantity E(z) above. Initially, we take z’ to
be an arbitrary linear combination of all
available measured data

z’'=Va+ Wb, (4)

the strategy being to find values of the elements
of the weight matrices V and W that minimize the
variances of the individual elements of z°.

Since we require z° to be unbiased, E(z’)
must be equal to E(z). This restricts the
choices available for the weights as follows:

V E(a) + WE(b) = S E(a) + T E(b),
and from Egs. (1) and (2),

Vx+WRXx=8Sx+TRX.

The true values x of the parameters are unknown;
thus, to guarantee an unbiased solution V and W
rust be chosen to satisfy the relation

VvV=8+TR-~-WR.

This condition on V and W implies that Eq. (4)
can be re-written as

z°'=8Sa+TRa-WRa+Wbh,
or, substituting from Eq. (3),
z’' =z + (W-T) (b -R a).

We note that the vector R a contains the
values of the newly measured quantities, as
calculated with the old evaluation of the

parameters. We introduce the notation p for this
"discrepancy”™ vector

P=b-Ra, (5)
8o that

z'’ =z + (W-T) p. (6)

From the definition in Eq. (5), the covariance
matrix for p can be written

D(p) = cov(p,p) = D(b) - cov(b,a) RT
- R cov(a,b) + R D(a) RT,

In finding the optimum choice for the
elements of the still-arbitrary matrix W, it will
prove convenient to introduce a second arbitrary
matrix Q, related to W by

W-T=0Q - cov(z,p) G, (7)
where
Gl =Dp(p. (8)

Utilizing Egs. (6), (7) and (8), we now can
write an expression for the uncertainties of the
z’ that result from the uncertainties the
quantities z and p (which, in turn, depend on
the measured quantities a and b).

D(z’) = cov{{z + Q p - cov(z,p) G P],
[z + Qp - coviz,p) G pPl}
= D(z) + D(Q pP) - cov(z,p) G cov(p,z). (9)

In arriving at this last result, extensive use of
Eq. (8) has been made in collapsing the original

nine covariance contributions down to just three.
The diagonal elements of D(Q p) in Eqg. (9)
are variances and cannot be made negative by any
choice of Q. However, they can be made equal to
zero (by setting all elements of Q equal to 0).
Thus, the minimum-variance estimator z°, the one
with the smallest "error bars,™ is obtained by
substituting Q = 0 in Egs. (6), (7) and (9);

z’ =z - cov(z,p) G p, (10)
D(z’) = D(z) - cov(z,p) G cov(p,z) (11)
= D(z) ~ D[cov(z,p) G p]. (12)

The "adjustment” equations, Egs. (10) and
(11), are the desired minimum-variance solution
to the partitioned-least-squares problem for the
case of measurements with general correlations.
We note immediately that (as desired) the largest
covariance matrix that needs to be inverted,
D(p), is of order of the number of new indirect
measurements, and that no restrictions have been
placed on measurement correlations. We also note
from the form of Eq. (12) that the uncertainties
of the z;  are guaranteed to be less than those

of the original z;.

The adjustment equations can now be
specialized to various applications by making
particular choices for 8 and T. For example,
solutions for the parameters themselves are
obtained by specifying that the quantity of
interest is simply Zz; = a. Solutions for the
parameters are then obtained immediately from
Egs. (10) and (11). Introducing the obvious
notation of a‘’ for the solution in this case,

.

a’ = a - cov(a,p) G p, (13)

D(a‘) = D(a) - cov(a,p) G covi(p,a), (14)
where, recalling Eq. (5), we have

cov(a,p) = cov(a,b) - D(a) RT, (15)

A second interesting case is the general
linear function z; = S a. Again from Eq. (10),

and using the fact that cov(zp,p) = 8 covi(a,p),

,

z," =S a - S cov(a,p) Gp

= 8 [a - cov(a,p) G p]
=8 a’. (1)

This result is the equivalent of the Gauss-Markov
theorem for the partitioned case. The practical
importance of this is that the minimum-variance
estimate of the parameters, a’, can be used to
calculate directly the minimum-variance estimate
of any linear function of the parameters, without
actually repeating the adjustment exercise.

Finally, we consider the special case in
which one wishes to produce improved estimates of
the indirect measurements, z3 = b. Again, we

have from Egs. (10) and (11)
b’ =b - cov(b,p) G p, (17)
D(b‘) = D(b) ~ cov(b,p) G cov(p,b), (18)
where, again from Eq. (5), we have
cov(b,p} = D(b} - cov(b,a) RT. (19)

It is useful now to place our results in the
context of earlier work along similar lines.
‘Interestingly, except for minor notational dif-
ferences, the minimum-variance solutions that we
obtain in Egs. (13)-(19) are identical to the
adjustment equations of Refs. 5-10, which were
derived from maximum-likelihood arguments. The
fact that these formulae can be derived in a
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variety of ways strongly suggests that they are,
in fact, Jjust the Normal equations, specialized
to the partitioned case. The nested matrix
inversions of the standard form of the Normal
equations (see below) makes this connection less
than obvious, so we present below a direct
demonstration that solutions of the adjustment
equations are also solutions of the Normal
equations.

The connection with the Normal equations is
most compactly presented in terms of partitioned
matrices for the measurement vector y, the
measurement errors u, and the associated covar-
iance matrix.

e
u= [ £ ] ‘

a

y = [ b ] 7

D{(a) cov(a,b)
= T ==

Py Elw ) [ cov(b,a) D (b) ]

Similarly, we introduce the partitioned matrix
c=IRpx |l Ipml. (20)

where the submatrix dimensions are indicated by
subscripts. The discrepancy vector can then be
written as
P=b-Ra=Cy
We also introduce the matrix
cov(a,p)
cov(y,p)=[ ]
cov(b,p)

30 that the partitioned-least~squares solutions,
Egqs. (13) and (17), can be combined.

a’
y = [ b’] =y - coviy,P) G p. (21)

Noting that
cov{y,p) = cov(y,C y) =D{(y) CT,
we can re-write Eq. (21) as
y =y -Dy) cTGp. (22)

We introduce another partitioned matrix H, where
T - T
BT = [ ITy,x | Rlyg,n 1. (23)

The matrix H is the "partitioned sensitivity
matrix™ mentioned in the Introduction. 1In terms
thus defined, the "observation equations" of the
standard CLLS approach become

y=Hx+ u.

Given y, D(y) and H, the CLLS method obtains
best estimates d° of the parameters x as
solutions of the Normal equations, for example
Eg. (27) of Ref. 2,

d’ = [H' pl(y) H17! ®T D"lqy) y. (24)

We now show that the parameter portion a’ of
the solutions y’ of Eq. (22) are identical to the
solutions d° of Eq. (24). We multiply both
sides of Eq. (22) by D'l(y), giving

plty) yo =pl(y) y-¢cTGp.
We then multiply by HT and obtain
HT pl(y) y' =HT Dl(y) vy - BT cT G p. (25)
Manipulating Egs.(14) and (17), one can show that
b =R a’,

so that ¥y’ and a“ satisfy the relation

velo] =[] mee

Another useful intermediate result is that

HT c¢T = RT - RT = 0.

Substituting for y° and HT ¢T in Eq. (25), we
obtain

HI ply) Ha’ =HT D l(y) y.

Multiplying through by [HT D1(y) H1"! then gives
the desired result. Provided that the sensitiv-
ity matrix H has the required "adjustment™
character, Eq. (23), and provided that a solution
of the Normal equations exists, then the parti-
tioned least-squares solutions a’ are identical
to the solutions d° of the Normal equations.

In addition to computational efficiency, the
partitioned formulation offers the further ad-
vantage of not requiring that the large matrices
D(y) and [HT D™l(y) H] actually possess
inverses.

Conclusion

In view of the clear minimum-variance basis,
and the reduced matrix inversion requirements
relative to solving the Normal equations, one can
forsee the future use of partitioned least
squares, especially Egs. (13)-(15), in a wide
variety of data-evaluation applications.
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